Skip to main content

Scientific highlights

Point Defects in h-BN as efficient UV quantum emitters

BN-SPE-LPS-highlight.png

Single photons sources (SPS) play a central role in the experimental foundation of quantum computing. Currently, there is a large scientific effort in identifying new bright and stable single-photon emission sources, with the aim of extending the spectral range achievable by quantum emitters. In the last years low dimensional layered semiconductors appeared as new promising optical materials and low energy SPS have been identified in transition metal dichalcogenides. In this work, thanks to a newly developed optical set-up integrated in a scanning transmission electron microscope, we have identified a new very bright UV single photon emitter in hexagonal boron nitride. Read more »

Nanometric resolved luminescence in h-BN Flakes: excitons and stacking order

cover-proposition3.png

Hexagonal boron nitride (h-BN) is one of the most promising candidates for light emitting devices in the far UV region, presenting a single strong excitonic emission at 5.8 eV. However, a single line appears only in extremely pure monocrystals that can hardly be obtained only though complex synthesis processes. Common h-BN samples present more complex emission spectra that have been generally attributed to the presence of structural defects. Despite a large number of experimental studies up to now it was not possible to attribute specific emission features to well identify defective structures. In this work we address this fundamental questions by adopting a theoretical and experimental approach combining few nanometer resolved cathodoluminescence techniques with high resolution transmission electron microscopy images and state of the art quantum mechanical simulations. Read more »

Publications

Bourrellier, R., et al. Bright UV Single Photon Emission at Point Defects in h -BN. Nano Letters 16, 4317 (2016).
Bourrellier, R., et al. Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics 1, (2014). Download: bourrellier-acs-photonics.pdf (7.37 MB)
Syndicate content