Skip to main content


Scientific highlights

Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy


Atomic vibrations and phonons are an excellent source of information on nanomaterials that we can access through a variety of methods including Raman Scattering, infrared spectroscopy, and electron energy-loss spectroscopy (EELS). In the presence of a plasmon local field, vibrations are strongly modified, and in particular, their dipolar strengths are highly enhanced, thus rendering Raman scattering and infrared spectroscopy extremely sensitive techniques. Here, we experimentally demonstrate that the interacion between a relativistic electron and vibrational modes in nanostructures is fundamentally modified in the presence of plasmons. We finely tune the energy of surface plasmons in metallic nanowires in the vicinity of hexagonal boron nitride, making it possible to monitor and disentangle both strong phonon-plasmon coupling and plasmon-driven phonon enhancement at the nanometer scale. Due to the near-field character of the electron beam-phonon interaction, optically-inactive phonon modes are also observed. Read more »

Emergence of point defect states in a plasmonic crystal

Posted in

Plasmonic crystals are well known to have band structure including a band gap, enabling the control of surface plasmon propagation and confinement. The band dispersion relation of bulk crystals has been generally measured by momentum-resolved spectroscopy using far field optical techniques while the defects introduced in the crystals have separately been investigated by near field imaging techniques so far. Particularly, defect related energy levels introduced in the plasmonic band gap have not been observed experimentally. In order to investigate such a localized mode, we performed electron energy-loss spectroscopy (EELS) on a point defect introduced in a plasmonic crystal made up of flat cylinders protruding out of a metal film and arranged on a triangular lattice. The energy level of the defect mode was observed to lie within the full band-gap energy range. This was confirmed by a momentum-resolved EELS measurement of the band gap performed on the same plasmonic crystal. Read more »


Arbouet, A., et al. Observer la matière à l’échelle du nanomètre et de la femtoseconde : la microscopie électronique en transmission ultrarapide. Photoniques 26 - 30 (2020).doi:10.1051/photon/202010226 Download: 
Kociak, M., Galvão Tizei, L.H., Meuret, S., Lourenço-Martins, H. & Stephan, O. Spectromicroscopies électroniques : sonder les propriétés optiques de nanomatériaux avec des électrons rapides. Photoniques 39 - 43 (2020).doi:10.1051/photon/202010239  Download: photon2020102p39.pdf (386.08 KB)
Talebi, N., Guo, S., Campos, A., Kociak, M. & van Aken, P.A. Toroidal Moments Probed by Electron Beams. Journal of Physics: Conference Series 14612052, 012174 (2020).
de Seauve, V., et al. Spectroscopies and electron microscopies unravel the origin of the first colour photographs. Angewandte Chemie International Edition (2020).doi:10.1002/anie.202001241
Tizei, L.H.G., et al. Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Nano Letters (2020).doi:10.1021/acs.nanolett.9b04659
Tizei, L.H.G. & Amato, M. Electronic structure and optical properties of semiconductor nanowires polytypes. The European Physical Journal B (2020).doi:10.1140/epjb/e2019-100375-7
Di Giulio, V., Kociak, M. & de Abajo, J.G.F. Probing quantum optical excitations with fast electrons. Optica 6, 1524 (2019). Download: 
Saito, H., et al. Emergence of point defect states in a plasmonic crystal. Physical Review B 100, (2019).
Yankovich, A.B., et al. Visualizing spatial variations of plasmon-exciton polaritons at the nanoscale using electron microscopy. Nano Letters (2019).doi:10.1021/acs.nanolett.9b03534
Guo, S., et al. Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics 6, 2509 - 2516 (2019). Download: acsphotonics.9b00838(1).pdf (3.82 MB)
Guo, S., Talebi, N., Campos, A., Kociak, M. & van Aken, P.A. Radiation of Dynamic Toroidal Moments. ACS Photonics 6, 467 - 474 (2019).
Das, P., et al. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy (2018).doi:10.1016/j.ultramic.2018.12.011 Download: 10.1016@j.ultramic.2018.12.011(1).pdf (2.1 MB)
Campos, A., et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nature Physics (2018).doi:10.1038/s41567-018-0345-z Download: CNP.pdf (1.79 MB)
Tararan, A., et al. Optical gap and optically active intragap defects in cubic BN. Physical Review B 982121, (2018). Download: PhysRevB.98.094106.pdf (2.16 MB)
Lourenço-Martins, H., Das, P., Tizei, L.H.G., Weil, R. & Kociak, M. Self-hybridization within non-Hermitian localized plasmonic systems. Nature Physics 89, (2018). Download: LM2018.pdf (3.41 MB)
Schmidt, F.-P., et al. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics (2017).doi:10.1021/acsphotonics.7b01060 Download: acsphotonics.7b01060(1).pdf (2.15 MB)
Campos, A., et al. Plasmonic Breathing and Edge Modes in Aluminum Nanotriangles. ACS Photonics (2017).doi:10.1021/acsphotonics.7b00204 Download: Campos2017.pdf (5.45 MB)
Guzzinati, G., et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications 14999 (2017).doi:10.1038/ncomms14999 Download: Nature Communications 2017 eacute.pdf (1.55 MB)
Tizei, L.H.G. & Kociak, M. Advances in Imaging and Electron PhysicsQuantum Nanooptics in the Electron Microscope. (2017).doi:10.1016/bs.aiep.2017.01.002 Download: Tizei_Kociak_AIE.pdf (3.49 MB)
Kociak, M. & Zagonel, L.F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112-131 (2017). Download: STEMCL_8.pdf (2.43 MB)
Meuret, S., et al. Lifetime Measurements Well below the Optical Diffraction Limit. ACS Photonics (2016).doi:10.1021/acsphotonics.6b00212 Download: ph500141j.pdf (7.44 MB)
Zhang, X., et al. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology 27, 195704 (2016). Download: nano_27_19_195704.pdf (2.66 MB)
Colliex, C., Kociak, M. & Stéphan, O. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1 - A24 (2016). Download: Colliex2016.pdf (6.32 MB)
Losquin, A. & Kociak, M. Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the radiative and full ElectroMagnetic Local Density of States. ACS Photonics 151006180224009 (2015).doi:10.1021/acsphotonics.5b00416 Download: acsphotonics.5b00416.pdf (1.71 MB)
Meuret, S., et al. Photon Bunching in Cathodoluminescence. Physical Review Letters 114, (2015). Download: PhysRevLett.114.197401.pdf (1.03 MB)
Tizei, L.H.G., et al. A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters 105, 143106 (2014). Download: Tizei_GaNQWCLAsymmetry_APL_2014.pdf (1.74 MB)
Bourrellier, R., et al. Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics 1, (2014). Download: bourrellier-acs-photonics.pdf (7.37 MB)
Kociak, M., et al. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique 15, 158 - 175 (2014). Download: 1-s2.0-S1631070513001515-main.pdf (2.66 MB)
Kociak, M. & Stéphan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews (2014).doi:10.1039/c3cs60478k Download: Chem. Soc. Rev. 2014 Kociak.pdf (2.86 MB)
Tizei, L.H.G., et al. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics: Condensed Matter 25, 505303 (2013). Download: Tizei2013_2.pdf (613.65 KB)
Mahfoud, Z., et al. Cathodoluminescence in a Scanning Transmission Electron Microscope: A Nanometer-Scale Counterpart of Photoluminescence for the Study of II–VI Quantum Dots. The Journal of Physical Chemistry Letters 4090 - 4094 (2013).doi:10.1021/jz402233x Download: Mahfoud2013.pdf (2.4 MB)
Pierret, A., et al. Structural and optical properties of Al x Ga 1- x N nanowires. physica status solidi (RRL) - Rapid Research Letters n/a - n/a (2013).doi:10.1002/pssr.201308009
Tizei, L.H.G. & Kociak, M. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters 110, (2013). Download: TizeiPRL2013.pdf (2.37 MB)
Zagonel, L.F., et al. Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology 23, 455205 (2012). Download: Zagonel_Nanotech.pdf (1.21 MB)
Rodríguez-González, B., et al. Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir 120410144721001 (2012).doi:10.1021/la300269n Download: la300269n.pdf (4.19 MB)
Tourbot, G., et al. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 23, 135703 (2012). Download: Nanotechnology 2012 Tourbot.pdf (802.75 KB)
Mazzucco, S., et al. Ultralocal Modification of Surface Plasmons Properties in Silver Nanocubes. Nano Letters 120202105244000 (2012).doi:10.1021/nl2037672 Download: Nano Lett. 2012 Mazzucco.pdf (3.49 MB)
Syndicate content