Skip to main content

Nano-optics

Scientific highlights

Three-dimensional vectorial imaging of surface phonon polaritons

figure.jpg

Surface phonon polaritons (SPhPs) are coupled photon-phonon excitations that emerge at the surfaces of nanostructured materials. Although they strongly influence the optical and thermal behavior of nanomaterials, no technique has been able to reveal the complete three-dimensional (3D) vectorial picture of their electromagnetic density of states. Using our monochromated NION-HERMES CHROMATEM, we could visualize varying SPhP signatures from nanoscale MgO cubes as a function of the beam position, energy loss, and tilt angle. The SPhPs’ response was described in terms of eigenmodes and used to tomographically reconstruct the phononic surface electromagnetic fields of the object. Such 3D information promises insights in nanoscale physical phenomena and might be useful to design and optimize nanostructures. This work was published in Science.

Optical polarization analogue in free electron beams

BlochPoincare.jpg

Spectromicroscopy techniques with fast electrons can quantitatively measure the optical response of excitations with unri- valled spatial resolution. However, owing to their inherently scalar nature, electron waves cannot access the polarization-related quantities. Despite promising attempts based on the conversion of concepts originating from singular optics (such as vortex beams), the definition of an optical polarization analogue for fast electrons has remained an open question. Here we establish such an analogue using the dipole transition vector of the electron between two well-chosen singular wave states. We show that electron energy loss spectroscopy allows the direct measurement of the polarized electromagnetic local density of states. In particular, in the case of circular polarization, it directly measures the local optical spin density. This work establishes electron energy loss spectroscopy as a quantitative technique to tackle fundamental issues in nano-optics, such as super-chirality, local polarization of dark excitations or polarization singularities at the nanoscale. Read more »

Publications

Li, X., et al. Three-dimensional vectorial imaging of surface phonon polaritons. Science 37160, 1364 - 1367 (2021).
Mkhitaryan, V., et al. Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters 21, (2021). Download: acsnanolett0c04667(2).pdf (4.15 MB)
Lourenço-Martins, H., Gérard, D. & Kociak, M. Optical polarization analogue in free electron beams. Nature Physics (2021).doi:10.1038/s41567-021-01163-w Download: OpticalPolarizationAnalog.pdf (5.54 MB)
Lingstädt, R., et al. Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378128, 20190599 (2020).
Arbouet, A., et al. Observer la matière à l’échelle du nanomètre et de la femtoseconde : la microscopie électronique en transmission ultrarapide. Photoniques 26 - 30 (2020).doi:10.1051/photon/202010226 Download: 
Kociak, M., Galvão Tizei, L.H., Meuret, S., Lourenço-Martins, H. & Stephan, O. Spectromicroscopies électroniques : sonder les propriétés optiques de nanomatériaux avec des électrons rapides. Photoniques 39 - 43 (2020).doi:10.1051/photon/202010239  Download: photon2020102p39.pdf (386.08 KB)
Talebi, N., Guo, S., Campos, A., Kociak, M. & van Aken, P.A. Toroidal Moments Probed by Electron Beams. Journal of Physics: Conference Series 14612052, 012174 (2020).
de Seauve, V., et al. Spectroscopies and electron microscopies unravel the origin of the first colour photographs. Angewandte Chemie International Edition (2020).doi:10.1002/anie.202001241
Tizei, L.H.G., et al. Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Nano Letters (2020).doi:10.1021/acs.nanolett.9b04659
Tizei, L.H.G. & Amato, M. Electronic structure and optical properties of semiconductor nanowires polytypes. The European Physical Journal B (2020).doi:10.1140/epjb/e2019-100375-7
Di Giulio, V., Kociak, M. & de Abajo, J.G.F. Probing quantum optical excitations with fast electrons. Optica 6, 1524 (2019). Download: 
Saito, H., et al. Emergence of point defect states in a plasmonic crystal. Physical Review B 100, (2019).
Yankovich, A.B., et al. Visualizing spatial variations of plasmon-exciton polaritons at the nanoscale using electron microscopy. Nano Letters (2019).doi:10.1021/acs.nanolett.9b03534
Guo, S., et al. Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics 6, 2509 - 2516 (2019). Download: acsphotonics.9b00838(1).pdf (3.82 MB)
Guo, S., Talebi, N., Campos, A., Kociak, M. & van Aken, P.A. Radiation of Dynamic Toroidal Moments. ACS Photonics 6, 467 - 474 (2019).
Das, P., et al. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Ultramicroscopy (2018).doi:10.1016/j.ultramic.2018.12.011 Download: 10.1016@j.ultramic.2018.12.011(1).pdf (2.1 MB)
Campos, A., et al. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nature Physics (2018).doi:10.1038/s41567-018-0345-z Download: CNP.pdf (1.79 MB)
Tararan, A., et al. Optical gap and optically active intragap defects in cubic BN. Physical Review B 982121, (2018). Download: PhysRevB.98.094106.pdf (2.16 MB)
Lourenço-Martins, H., Das, P., Tizei, L.H.G., Weil, R. & Kociak, M. Self-hybridization within non-Hermitian localized plasmonic systems. Nature Physics 89, (2018). Download: LM2018.pdf (3.41 MB)
Schmidt, F.-P., et al. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics (2017).doi:10.1021/acsphotonics.7b01060 Download: acsphotonics.7b01060(1).pdf (2.15 MB)
Campos, A., et al. Plasmonic Breathing and Edge Modes in Aluminum Nanotriangles. ACS Photonics (2017).doi:10.1021/acsphotonics.7b00204 Download: Campos2017.pdf (5.45 MB)
Guzzinati, G., et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications 14999 (2017).doi:10.1038/ncomms14999 Download: Nature Communications 2017 eacute.pdf (1.55 MB)
Tizei, L.H.G. & Kociak, M. Advances in Imaging and Electron PhysicsQuantum Nanooptics in the Electron Microscope. (2017).doi:10.1016/bs.aiep.2017.01.002 Download: Tizei_Kociak_AIE.pdf (3.49 MB)
Kociak, M. & Zagonel, L.F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112-131 (2017). Download: STEMCL_8.pdf (2.43 MB)
Meuret, S., et al. Lifetime Measurements Well below the Optical Diffraction Limit. ACS Photonics (2016).doi:10.1021/acsphotonics.6b00212 Download: ph500141j.pdf (7.44 MB)
Zhang, X., et al. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology 27, 195704 (2016). Download: nano_27_19_195704.pdf (2.66 MB)
Colliex, C., Kociak, M. & Stéphan, O. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1 - A24 (2016). Download: Colliex2016.pdf (6.32 MB)
Losquin, A. & Kociak, M. Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the radiative and full ElectroMagnetic Local Density of States. ACS Photonics 151006180224009 (2015).doi:10.1021/acsphotonics.5b00416 Download: acsphotonics.5b00416.pdf (1.71 MB)
Meuret, S., et al. Photon Bunching in Cathodoluminescence. Physical Review Letters 114, (2015). Download: PhysRevLett.114.197401.pdf (1.03 MB)
Tizei, L.H.G., et al. A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters 105, 143106 (2014). Download: Tizei_GaNQWCLAsymmetry_APL_2014.pdf (1.74 MB)
Bourrellier, R., et al. Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics 1, (2014). Download: bourrellier-acs-photonics.pdf (7.37 MB)
Kociak, M., et al. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique 15, 158 - 175 (2014). Download: 1-s2.0-S1631070513001515-main.pdf (2.66 MB)
Kociak, M. & Stéphan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews (2014).doi:10.1039/c3cs60478k Download: Chem. Soc. Rev. 2014 Kociak.pdf (2.86 MB)
Tizei, L.H.G., et al. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics: Condensed Matter 25, 505303 (2013). Download: Tizei2013_2.pdf (613.65 KB)
Mahfoud, Z., et al. Cathodoluminescence in a Scanning Transmission Electron Microscope: A Nanometer-Scale Counterpart of Photoluminescence for the Study of II–VI Quantum Dots. The Journal of Physical Chemistry Letters 4090 - 4094 (2013).doi:10.1021/jz402233x Download: Mahfoud2013.pdf (2.4 MB)
Pierret, A., et al. Structural and optical properties of Al x Ga 1- x N nanowires. physica status solidi (RRL) - Rapid Research Letters n/a - n/a (2013).doi:10.1002/pssr.201308009
Tizei, L.H.G. & Kociak, M. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters 110, (2013). Download: TizeiPRL2013.pdf (2.37 MB)
Zagonel, L.F., et al. Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology 23, 455205 (2012). Download: Zagonel_Nanotech.pdf (1.21 MB)
Syndicate content