Skip to main content

Photon Bunching in Cathodoluminescence


We have measured the second order correlation function g(2)(t) of the cathodoluminescence intensity resulting from the excitation by fast electrons of defect centers in wide band-gap semiconductor nanocrystals of diamond and hexagonal boron nitride. We show that the cathodoluminescence second order correlation function g(2)(t) of multiple defect centers is dominated by a large, nanosecond zero-delay bunching (g(2)(0)>30), in stark contrast to their flat photoluminescence g(2)(t) function. We have developed a model showing that this bunching can be attributed to the synchronized emission from several defect centers excited by the same electron through the deexcitation of a bulk plasmon into few electron-hole pairs.

Recently published in S. Meuret et al Phys. Rev. Lett. 114 197401 (2015)

Article in our website